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We report herein the first example of the stereoselective synthesis 100 mg-o - . .
and reaction of simple silveZ}--alkylenethiolated (M = Ag),
which serve as stabilized)-enethiol storage. Enethiols (M = 80D
H) are tautomerically stable isomers of thioaldehydes with a high
kinetic barrier for their interconversiof?, but in general, they are 604°
thermally labile because of their pronounced tendency to dimerize g o
to dithiohemiacetals or divinyl sulfides or to polymerize on standing © 404
at room temperaturg* These properties make it very difficult to
synthesize simple enethidlswith defined stereochemistry in a pure 20 1 o ©
form .5 Furthermore, in contrast to the substituted enethiolates, some ©
alkali metal salts of simple enethiolates are configurationally |&bile; 0 T T T
for instance, thdée-isomer of lithium enethiolaté (R = Bu, M = 0 2 time (;1)0 60 8
Li), prepared by LiAlH, reduction of l-alkenesulfenate anion,

. - o . Figure 1. Decomposition of silver enethiolafe&in CDCl; at 25°C in the
isomerizes to an equilibrium mixture @E = 55:45 above-40 dark (determined byH NMR analyses). (a)@) 0.029 M in argon and (b)
°C in THFY It occurred to us that the use of silver(l), instead of an (®) 0.022 M in the air.

alkali metal, with formation of silver enethiolatds(M = Ag),

I . . Methylati f Silver Thiolate 1a with Methyl lodide?
would stabilize the enethiols through the preferable -ssdft Table 1. Methylation of Silver Thiolate 1a with Methy! lodide

combinatiorg? entry solvent &’ conditions 4ayield (%)° ratio?
The chemistry of simple silver enethiolates remains unknown, 1 hexane 1.88 77 80:20
mostly due to the lack of an efficient method for their synthé8es. g Eeg’me 420 @ 7764 88921118
Deprotonation chemistry is not viable for simple thioaldehydes as 2 C|t2—|2C|2 8.93 65 92-8
they are not sufficiently stable under the conditidr®ur method 5 CH,Cly ’ fo 60 98:2
for the stereoselective synthesis of enethiolates involves an unusual 6 CHCI, TEMPC® 91 >99:1
vinylic Sy2 reaction of E)-vinyl-A3-iodanes 3:11 bimolecular 7 acetone  20.56 42 69:31
substitution of E)-A3-iodane3 with N,N-dimethylthiobenzamides g mggn 32.66 i gj ggf;
in dichloromethane at room temperature afforded the inve#pd ( 10 MeOH o 72 89:11
Svinylthioimidonium salts2 in high yields!? Silver salts undergo 11 MeCN 35.94 48 47:53

a regioselective €S bond cleavage df: exposure oRa (Ar =
p-CICgH.) to silver acetate (1.2 equiv) in THF:water (4:1) at room 2Unless otherwise noted, reaction was carried out using 10 equiv of
temperature in the dark gave silveZ){l-decenylthiolate 1a) Mel at rocgm temperature (:‘07. h under nitrogen in the darR Dielectric
. . : v : constants¢ Isolated yieldsd Z:E ratios of 4a determined by!H NMR.

stereoselectively in 77% yield, along with the formationNaf\- e TEMPO (1 equiv) was used as an additive under argon.
dimethylp-chlorobenzamide (82%) and)¢S-1-decenylp-chloro-
thiobenzoate (18%). Isolation and purification of the silver thiolate tetramethylpiperidine 1-oxyl (TEMPO, 1 equiv) completely inhibits
la are simple, and a repeated washing of a crude mixture with the decomposition ofla in CDCl; solution under argon. These
methanol and ethyl acetate successively, which removes theresults probably suggest the intervention of some radical species
byproducts amide and thiocarboxylate, afforded the pure enethiolateduring the decomposition dfa under argon.
laas a yellow powder. SilveiZ-1-hexenylthiolate Ib) was also Direct methylation of silver enethiolatka with excess methyl
prepared from2b (Ar = Ph) in 80% vyield. These silver vinyl-  iodide under nitrogen affords a mixture d&)¢ and ¢)-1-decenyl
thiolates1 are sparingly soluble in water, methanol, acetonitrile, methyl sulfides 4a) (Table 1). The stereochemistry & seems
and ethyl acetate, but soluble in hexane, dichloromethane, chloro-to depend on the solvent polarityand a high degree of stereo-
form, and pyridine. isomerization was observed in polar solvents with a large dielectric

In a marked contrast taZf-enethiols, silver Z)-enethiolatesl constant. It is noted that th&-selectivity with retention of
are thermally and stereochemically stable, and neither decomposi-stereochemistry ofa was considerably improved in the presence
tion nor isomerization of stereochemistry was observed when they of a molecular dioxygen or by the addition of TEMPO. These
were left standing over 3 months in a refrigerator in the dark. In radical scavengers probably slow down the rate of the isomerization
solution, however, silver Z)-1-decenylthiolate Xa) gradually and/or decomposition of silver thiolafiea under the condition!
decomposes at 28C with a half-life time ;) of 6 h in CDCls Silver thiolates AgSR generally adopt a cyclic oligomer structure
under argon (Figure 1a). On the other hand, in the air (Figure 1b), (AgSR), (n = 3, 4, 8, and 12) through the intermolecular-A&
silver thiolatelais highly stable and no isomerization as well as interactions or a nonmolecular layered structttréhe degree of
decomposition was detected on standing for more than 3 days inaggregation of the silver thiolates mostly depends on the steric
the dark. Furthermore, we found that the addition of 2,2,6,6- demanding of the thiolate ligands. In solutions, electrospray (ESI)
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Table 2. Alkylation of 1 in the Presence of BusNX2 Scheme 2
" . BugNI S_ S R
Bu,NX, R'X R S BuN* R SR 1a CHuél . RS\ R__ S\/CI>
CH.Cl,, 1, N — — M= A oClo,
M = Ag 2dazrk ? 5 4 ( 9 2 h, Na 6. R =n-CgH17 (81%) 7
4 Scheme 3
Bu,NX R'X time  yield NG NO2
4] H S
ety 1 (%) (equiv) 0 @)P  ratioc 1a + CI\@\ % n-Cethr  _/ \©\
1 1la F  Mel(3) 2 44 946 M=Ag) NO2 g Ny - NO2
2 la Cl  Mel(d 2 89 96:4
3 la Br Mel(3) 2 90 96:4 0 0
4 la | Mel (3) 2 77 97:3 Lil
5 1b | Mel (3) 3 87 99: ¢ la  + - _
6 1a |  Et(Q) 16 73 955 (M= Ag) GreCe "7 “nCeHyy
7 1b | Etl (3) 16 70 98:3 e (81%)
8 la | i-Prl (3) 35 18 97:3
9 la | i-Prl (3) 38 55 65:35 sulfide 7 was detected, which indicates that the rate of the reaction
ﬁ ig : gﬂgttg: g; 3 gg gg;; of enethiolate5a with the sulfide 7 is faster than that with
12 1a | CH,—CHCH:Br (3) 3 o8 97:3 dichloromethane. Silver iodide formed during the reaction probably
13 1la | E-PhCH=CHCH,Br(1) 2 87 >96:4 activates the sulfid@ more effectively than dichloromethane, by
14 1la | PhCOCHBr (1) 1 77 96:4 the simultaneous coordination of Ag(l) to the sulfur and chlorine
atoms of7.

aReaction was carried out in GBI, in the presence of BiX (1-1.2 : ; .
equiv) at room temperature under nitrogen in the datkolated yielcE Z: Scheme 3 shows that arylation as well as Michael addition of

E ratios determined byH NMR. @ Determined by GCE Dithioacetal6 (2)-silver thiolatela also proceeds smoothly in high yields.
(22%) was obtained.CCl, was used as a solvent. In conclusion, we have developed an efficient method for the
stereoselective synthesis of simple silv&j-€nethiolates, which

Scheme 1 o . - :
creme . R serve as stabilizedf-enethiols and efficient agents for the synthesis
R S-M R SN Mep N—=_ Ph of a variety of ¢)-vinyl sulfides.
BF: |: X . . : .
; 2 Ar 4 3 BFa Supporting Information Available: Experimental details, Schemes

S1-S3, Figure S1 and S2. This material is available free of charge via

a: R=n-CgHy7, b: R=Bu
the Internet at http://pubs.acs.org.
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